EVENTS

Our events in the areas of Big Data and Research Innovation include a diverse set of topics such as Future, Strategy, Technology, Applications, and Management.

If you feel that your event or event series should be part of this event calendar, just contact us!

images/02_events/TYEN.png#joomlaImage://local-images/02_events/TYEN.png?width=1600&height=584
Monday, June 17th, 2024 | 16:00 p.m.

Train Your Engineering Network - GENO - Optimization for Classical Machine Learning Made Fast and Easy

via Zoom

The presentation series “Train your engineering network” on diverse topics of Machine Learning addresses all interested persons at TUHH, from MLE partners as well as from the Hamburg region in general and aims at promoting the exchange of information and knowledge between these persons as well as their networking in a relaxed atmosphere. Thereby, the machine learning activities within MLE, TUHH and in the wider environment shall be made more visible, cooperations shall be promoted and also interested students shall be given an insight.

Sören Laue

Most problems from classical machine learning can be cast as an optimization problem. I will present GENO (GENeric Optimization), a framework that lets the user specify a constrained or unconstrained optimization problem in an easy-to-read modeling language. GENO then generates a solver that can solve this class of optimization problems. The generated solver is usually as fast as hand-written, problem-specific, and well-engineered solvers. Often the solvers generated by GENO are faster by a large margin compared to recently developed solvers that are tailored to a specific problem class. I will dig into some of the algorithmic details, e.g., computing derivatives of matrix and tensor expressions, the optimization methods used in GENO, and their implementation in Python.

All talks will be streamed via Zoom using https://tuhh.zoom.us/j/85203195489?pwd=K21saVMvZHc0d2NoNHd2bDZ6TmdDUT09
Meeting-ID: 852 0319 5489
Code: 827469

Universität Hamburg
Adeline Scharfenberg
Diese E-Mail-Adresse ist vor Spambots geschützt! Zur Anzeige muss JavaScript eingeschaltet sein. 

Universität Hamburg
Adeline Scharfenberg
Diese E-Mail-Adresse ist vor Spambots geschützt! Zur Anzeige muss JavaScript eingeschaltet sein. 

Universität Hamburg
Adeline Scharfenberg
Diese E-Mail-Adresse ist vor Spambots geschützt! Zur Anzeige muss JavaScript eingeschaltet sein.