deep learning-based solutions

Events

images/02_events/AI%20for%20good.png#joomlaImage://local-images/02_events/AI for good.png?width=800&height=300
Tuesday, June 24th 2025 | 16:00 - 17:00 p.m

Towards AI-powered global-scale species distribution models

online

Estimating the geographic range of a species from sparse observations is a challenging and important geospatial prediction problem. Given a set of locations where a species has been observed, the goal is to build a model to predict whether the species is present or absent at any location. This problem has a long history in ecology, but traditional methods struggle to take advantage of emerging large-scale crowdsourced datasets which can include tens of millions of observations of hundreds of thousands of species in addition to multi-modal image and text data. In this talk, I will present recent work from my group on deep learning-based solutions for estimating species’ ranges from incomplete data. I will also discuss some of the open challenges that exist in this space.  

Learning Objectives:  

  1. Understand the capabilities of current deep learning methods for species range estimation.
  2. Recognise the limitations of these models in the context of current open challenges in this space  

Institution

  • AI for Good

Universität Hamburg
Adeline Scharfenberg
Diese E-Mail-Adresse ist vor Spambots geschützt! Zur Anzeige muss JavaScript eingeschaltet sein. 

Universität Hamburg
Adeline Scharfenberg
Diese E-Mail-Adresse ist vor Spambots geschützt! Zur Anzeige muss JavaScript eingeschaltet sein. 

Universität Hamburg
Adeline Scharfenberg
Diese E-Mail-Adresse ist vor Spambots geschützt! Zur Anzeige muss JavaScript eingeschaltet sein.