Abstract
Consensus and its variants, including set agreement and approximate agreement, play a central role in our understanding of asynchronous shared memory distributed computing. I will discuss some classical and recent results about these problems, including algorithms, hierarchies, impossibility results, and space complexity lower bounds.
Bio
Faith Ellen is a Professor of Computer Science at the University of Toronto and is currently serving as the Associate Chair, Graduate Students, in the Department of Computer Science. She received her Ph.D. from the University of California, Berkeley, in 1982. Her research interests span the theory of distributed computing, complexity theory and data structures. From 1997 to 2001, she was vice chair of SIGACT, the leading international society for theory of computation and, from 2006 to 2009, she was chair of the steering committee for PODC, the top international conference for theory of distributed computing. In 2014, she co-authoured the book, "Impossibility Results for Distributed Computing". Faith is a Fellow of the ACM.
Institution
Starting from a formalization of the main research goals of artificial intelligence (AI) using information and probability theory, the talk will show how our research on (dynamic and causal) probabilistic relational models, combined with pretrained embedding-based models, can contribute to the design of agents that (i) can handle non-trivial task descriptions and (ii) can appropriately interact with humans (and other agents) in so-called social mechanisms. With social mechanisms as a central topic of humanities-centered AI, the talk also tries to shed light on where and how AI regulation can be sensibly applied in the future.
Bio
Ralf Möller is Full Professor of Artificial Intelligence in Humanities and heads the Institute of Humanities-Centered AI (CHAI) at the Universität Hamburg. His main research area is artificial intelligence, in particular probabilistic relational modeling techniques and natural language technologies for information systems as well as machine learning and data mining for decision making of agents in social mechanisms. Ralf Möller is co-speaker of the Section for Artificial Intelligence of the German Informatics Society. He is also an affiliated professor at DFKI zu Lübeck, a branch of Deutsches Forschungszentrum für Künstliche Intelligence with several sites in Germany. DFKI is responsible for technology transfer of AI research results into industry and society.
Before joining the Universität Hamburg in 2024, Ralf Möller was Full Professor for Computer Science and headed the Institute of Information Systems at Universität zu Lübeck. In Lübeck he was also the head of the research department Stochastic Relational AI in Heathcare at DFKI. In his earlier carrier, Ralf Möller also was Associate Professor for Computer Science at Hamburg University of Technology from 2003 to 2014. From 2001 to 2003 he was Professor at the University of Applied Sciences in Wedel/Germany. In 1996 he received the degree Dr. rer. nat. from the University of Hamburg and successfully submitted his Habilitation thesis in 2001 also at the University of Hamburg.
Professor Möller was co-organizer of several national and international workshops on humanities-centered AI as well as on description logics. He also was co-organizer of the European Lisp Symposium 2011. In 2019, he co-chaired the organization of the International Conference on Big Knowledge ICBK19 in Beijing, and he is co-organizing the conference "Artificial Intelligence" KI2021 in Berlin with colleagues Stefan Edelkamp and Elmar Rueckert. Prof. Möller was an Associate Editor for the Journal of Knowledge and Information Systems, member of the Editorial Board of the Journal on Big Data Research, as well as Mathematical Reviews/MathSciNet Reviewer.
Institution
Abstract
The brain is an information processing machine, and its function emerges from the ability of networks of neurons to process information. Yet, characterizing and measuring how neurons in the brain interact to process information has been challenging. Here I will present my computational work in developing analytical methods than can be applied to brain recordings during cognitive tasks. These methods allow us to infer how real neurons interact to encode information, transmit it downstream and generate behaviors such as perception and decision-making. They also allow us to understand differences between computations made by real neurons and computations made by machine-learning algorithms performing the same tasks.
Bio
Stefano Panzeri is a computational neuroscientist, researching at the interface between theory and experiment. His main research interest is understanding the principles of cortical information processing. He pursues this interest by developing new quantitative data analysis techniques based on the principles of Information Theory and machine learning and by developing computational models of neural network function. Stefano received a Laurea in Physics from the University of Torino, and a PhD in Computational Neuroscience from SISSA, Trieste, Italy. He has held personal research awards in both theoretical physics and computational neuroscience, including an INFN junior Fellowship in Theoretical Physics at Turin University, an EU Marie Curie postdoctoral Fellowship at the University of Oxford, and an MRC-funded Junior Group Leader position at the University of Newcastle. He has held tenured Faculty positions as assistant, associate and full professor at the Universities of Manchester and Glasgow. He has been visiting scientist at the Max Planck Institute for Biological Cybernetics and at Harvard Medical School for several years. He served as Coordinator of the Center for Neuroscience and Cognitive Systems of IIT. He also served as Deputy Chair of the UK Medical Research Council Panel for fellowships in Bioinformatics and Neuroinformatics. He currently works as Full Professor and Director of the Institute for Neural Information Processing at University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany.
Institution
Machine learning (ML) models trained on code are increasingly integrated into various software engineering tasks. While they generally demonstrate promising performance, many aspects of their capabilities remain unclear. Specifically, there is a lack of understanding regarding what these models learn, why they learn it, how they operate, and when they produce erroneous outputs.
In this talk, I will present findings from a series of studies that (i) examine the abilities of these models to complement human developers, (ii) explore the syntax and representation learning capabilities of ML models designed for software maintenance tasks, and (iii) investigate the patterns of bugs these models exhibit. Additionally, I will discuss a novel self-refinement approach aimed at enhancing the reliability of code generated by Large Language Models (LLMs). This method focuses on reducing the occurrence of bugs before execution, autonomously and without the need for human intervention or predefined test cases.
Bio:
Foutse Khomh is a Full Professor of Software Engineering at Polytechnique Montréal, a Canada Research Chair Tier 1 on Trustworthy Intelligent Software Systems, a Canada CIFAR AI Chair on Trustworthy Machine Learning Software Systems, an NSERC Arthur B. McDonald Fellow, an Honoris Genius Prize Laureate, and an FRQ-IVADO Research Chair on Software Quality Assurance for Machine Learning Applications. He received a Ph.D. in Software Engineering from the University of Montreal in 2011, with the Award of Excellence. He also received a CS-Can/Info-Can Outstanding Young Computer Science Researcher Prize for 2019. His research interests include software maintenance and evolution, machine learning systems engineering, cloud engineering, and dependable and trustworthy ML/AI. His work has received four ten-year Most Influential Paper (MIP) Awards, six Best/Distinguished Paper Awards at major conferences, and two Best Journal Paper of the Year Awards. He initiated and co-organized the Software Engineering for Machine Learning Applications (SEMLA) symposium and the RELENG (Release Engineering) workshop series. He is co-founder of the NSERC CREATE SE4AI: A Training Program on the Development, Deployment, and Servicing of Artificial Intelligence-based Software Systems and one of the Principal Investigators of the DEpendable Explainable Learning (DEEL) project. He is also a co-founder of Quebec's initiative on Trustworthy AI (Confiance IA Quebec) and Scientific co-director of the Institut de Valorisation des Données (IVADO). He is on the editorial board of multiple international software engineering journals (e.g., IEEE Software, EMSE, SQJ, JSEP) and is a Senior Member of IEEE.
Institution
Universität Hamburg
Adeline Scharfenberg
Universität Hamburg
Adeline Scharfenberg
Universität Hamburg
Adeline Scharfenberg