systems biology

Events

images/02_events/data-literacy_workshop.jpg#joomlaImage://local-images/02_events/data-literacy_workshop.jpg?width=800&height=300
Tuesday 05th - Thursday 07th March, 2024 | 10:00 - 17:00 a.m.

Data Literacy mit Fokus auf Dateninterpretation durch Data Mining

Campus Lehre (N55), UKE

Dr. Sonja Hänzelmann and Dr. Fabian Hausmann, Institute of Medical Systems Biology, UKE

In diesem intensiven 3-tägigen Kurs werden Sie in die Welt der Data Literacy (Die Fähigkeit, kompetent mit großen Datenmengen umzugehen) eingeführt. Der Kurs bietet eine praxisnahe Herangehensweise an biomedizinische Probleme, bei denen die Teilnehmer:innen lernen, wie sie relevante Erkenntnisse aus komplexen Datensätzen gewinnen können.

Topics:
Grundlagen der Dateninterpretation und Data Literacy: Verständnis von Schlüsselbegriffen und Konzepten im Bereich Data Literacy
Python für die Datenanalyse: Einführung in die Programmiersprache Python für Datenanalyse und -manipulation
Einführung in Data Mining-Techniken: Überblick über verschiedene Data Mining-Methoden und ihre Anwendungen im biomedizinischen Bereich.
Praktische Anwendung von Clustering, Klassifizierung und automatischer Mustererkennung
Anwendung auf biomedizinische Probleme: Bearbeitung eines ausgewählten biomedizinischen Problems durch ein Gruppenprojekt
Visualisierung und Interpretation der Ergebnisse: Effektive Kommunikation von Analyseergebnissen durch Datenvisualisierung
Interpretation und Diskussion der gewonnenen Erkenntnisse im biomedizinischen Kontext

images/02_events/InSilicoImmunity_Graphic-600x260.png#joomlaImage://local-images/02_events/InSilicoImmunity_Graphic-600x260.png?width=600&height=260
Tuesday 22th - Thursday 24th October, 2024 | 09:00 - 12:00 a.m.

In Silico Immunity: Use Your Computer to Detect or Treat Infection and Inflammation

Seminar room 1.65, Center for Molecular Neurobiology Hamburg (ZMNH), Falkenried 94, 20251 HH

learn_bAIome offers workshops and trainings in biomedical AI/data science with tailored formats that take into account background, programming skills and intensity to provide unique, focused, and effective courses. These courses are free and open to students, clinicians, and researchers across academic institutions in Hamburg.

Lecturer: Dr. Lorenz Adlung, I. Department of Medicine, Hamburg Center for Translational Immunology (HCTI), bAIome, UKE

Prerequisites: Intrinsic motivation to learn about infection and inflammation using your computer.

Description: This workshop is open to all students, researchers and clinicians who want to learn how we use (“big”?) data and computational modelling for discovery and rational intervention in infection and inflammation. In today’s biomedical research, the bottleneck has shifted, and for the first time, data generation is no longer the rate-limiting step in scientific progress, but rather: data analysis. We will discuss current trends and show how we can use mathematical concepts and analytical thinking to address unmet clinical needs in influenza infection and inflammatory bowel disease. The workshop will be in presence and therefore each participant should bring their own laptop or ipad.

Topics

  • “big” data and code repositories
  • mathematical concepts relevant to infection and inflammation
  • computational modelling of murine influenza infection
  • identification of treatment responders in inflammatory bowel disease
  • discussion of the future of bAIomedical research
images/02_events/DataAnalysisR.jpg#joomlaImage://local-images/02_events/DataAnalysisR.jpg?width=800&height=300
Tuesday 12th - Thursday 13th March, 2024 | 09:00 - 12:00 a.m.

Introduction to Data analysis in R

Seminar room 1.65, Center for Molecular Neurobiology Hamburg (ZMNH), Falkenried 94, 20251 HH

Dr. Behnam Yousefi, Institute of medical systems biology, UKE

This workshop is for students, researchers, and clinicians keen to learn the R programming language and data analysis relevant to biomedicine. The course is designed to be practical and comprehensive with no specific background requirements. We will focus on fundamentals of data analysis with examples of real-life data in biomedicine, such as gene expression. By the end of the course, participants will be familiar with the essentials of data analysis, including statistical tests, linear regression, principal component analysis, clustering and data visualization. The workshop will be in presence and therefore each participant should bring their own laptop (no ipads).

Topics:
Basics of R programming language
Statistical tests
Linear regression
Principal component analysis (PCA)
Clustering
Data visualization

images/02_events/DataAnalysisR.jpg#joomlaImage://local-images/02_events/DataAnalysisR.jpg?width=800&height=300
Tuesday 24th - Thursday 26th September, 2024 | 09:00 - 12:00 a.m.

Introduction to Data analysis in R

Seminar room 1.65, Center for Molecular Neurobiology Hamburg (ZMNH), Falkenried 94, 20251 HH

Dr. Behnam Yousefi, Institute of medical systems biology, UKE

This workshop is for students, researchers, and clinicians keen to learn the R programming language and data analysis relevant to biomedicine. The course is designed to be practical and comprehensive with no specific background requirements. We will focus on fundamentals of data analysis with examples of real-life data in biomedicine, such as gene expression. By the end of the course, participants will be familiar with the essentials of data analysis, including statistical tests, linear regression, principal component analysis, clustering and data visualization. The workshop will be in presence and therefore each participant should bring their own laptop (no ipads).

Topics:

Basics of R programming language
Statistical tests
Linear regression
Principal component analysis (PCA)
Clustering
Data visualization

images/02_events/introduction%20to%20LM.jpg#joomlaImage://local-images/02_events/introduction to LM.jpg?width=800&height=300
Tuesday, April 09th & 10th, 2024 | 09:00 - 12:00 a.m.

Introduction to Machine Learning in Python

Seminar room 1.65, Center for Molecular Neurobiology Hamburg (ZMNH), Falkenried 94, 20251 HH

Dr. Behnam Yousefi, Institute of medical systems biology, UKE

This workshop is open to students, researchers, and clinicians keen to learn the essentials of machine learning and implementing it via Python. The aim of the course is to provide a comprehensive map of machine learning (and deep learning) methods with no specific background requirements. A little background in python can be helpful, though. We will focus on fundamentals of machine learning, validation methods, linear and nonlinear models, and feature reduction. The students will also get familiarized with the Python packages of Sci-kit Learn and Pytorch. The workshop will be in presence and therefore each participant should bring their own laptop (no ipads).

Topics
Types of machine learning: supervised and unsupervised
Validation  metrics and cross validation
Introduction to linear and nonlinear models include: Linear regression, Random forest, support vector machines, deep neural networks.
Feature reduction.
Regularization.

 

images/02_events/RNN_image-600x260.png#joomlaImage://local-images/02_events/RNN_image-600x260.png?width=600&height=260
Tuesday 15th - Thursday 17th October, 2024 | 09:00 - 12:00 a.m.

Introduction to Recurrent Neural Networks (RNNs) and their Applications

Seminar room 1.65, Center for Molecular Neurobiology Hamburg (ZMNH), Falkenried 94, 20251 HH

learn_bAIome offers workshops and trainings in biomedical AI/data science with tailored formats that take into account background, programming skills and intensity to provide unique, focused, and effective courses. These courses are free and open to students, clinicians, and researchers across academic institutions in Hamburg.

Lecturer: Dr. Fatemeh Hadäghi, Institute of Computational Neuroscience, UKE

Prerequisites A basic understanding of neural networks and machine learning concepts is expected as well as a familiarity with Python and basic programming skills.

Description This workshop is open to students, researchers, and clinicians wanting to learn about recurrent neural networks (RNNs) and their applications in biomedical signal processing. RNNs are vital tools in the field of neural networks, especially known for their capability to manage sequential data. This workshop will provide an accessible introduction to RNNs, concentrating on their core concepts and various applications. We will explore how RNNs excel at capturing temporal dependencies through their unique recurrent connections, making them highly effective for a variety of tasks. Participants can expect to achieve a solid understanding of the basic principles and architecture of RNNs as well as the ability to identify suitable applications for RNNs and implement basic RNN models. The workshop will be in presence and therefore each participant should bring their own laptop (no ipads).

Topics

  • Overview of RNN fundamentals and how they differ from other neural networks
  • Key applications of RNNs in biomedical signal processing
  • Reservoir computing (RC)
  • Hands-on exercises and examples to illustrate RNN implementation and usage
images/02_events/ML%20for%20Biomedical.jpg#joomlaImage://local-images/02_events/ML for Biomedical.jpg?width=800&height=300
Wednesday, February 05th - Friday 7th February, 2025 | 09:00 - 12:00 a.m.

Machine Learning for Biomedical Applications- International EUGLOH Workshop in Hamburg

University Medical Center Hamburg-Eppendorf (UKE) Hamburg

learn_bAIome offers workshops and trainings in biomedical AI/data science with tailored formats that take into account background, programming skills and intensity to provide unique, focused, and effective courses. These courses are free and open to students, clinicians, and researchers across academic institutions in Hamburg.

Prerequisites: Intermediate level computational background and basic knowledge of machine learning

Description: This 3-day international workshop is organised by University of Hamburg’s European University Alliance for Global Health (EUGLOH), Hub of Computing and Data Science (HCDS) and Center for Biomedical AI at UKE (bAIome) to foster international exchange and cooperation among students and researchers working in machine learning relating to biomedical questions. The vision is to create a supportive network and inspire international collaborations.

The workshop will explore various aspects of machine learning using biomedical data with the hands-on practical projects providing the main focus, allowing participants to work in a team environment to understand how machine learning is applied to specific biomedical challenges.

For further details and registration check out the EUGLOH website

images/02_events/graphic_v1.jpg#joomlaImage://local-images/02_events/graphic_v1.jpg?width=800&height=300
Tuesday 28th - Thursday 30th May, 2024 | 09:00 - 12:00 a.m.

Machine Learning in Practice (intermediate level)

Seminar room 1.65, Center for Molecular Neurobiology Hamburg (ZMNH), Falkenried 94, 20251 HH

learn_bAIome offers workshops and trainings in biomedical AI/data science with tailored formats that take into account background, programming skills and intensity to provide unique, focused, and effective courses. These courses are free and open to students, clinicians, and researchers across academic institutions in Hamburg.

This workshop is open to students, researchers, and clinicians wanting to learn how machine learning is applied for biomedical datasets, the different classes of machine learning algorithms that may be used, as well as the best practices in selecting and evaluating algorithms, and their limitations.  The aim of the course is to provide concepts and tools to navigate the use of machine learning in the biomedical landscape. The course will use biological datasets and there will be hands-on components as well as discussions. Participants should already have taken an introduction to machine learning and be familiar with Python programming. The workshop will be in presence and therefore each participant should bring their own laptop (no ipads).

Topics

  • Taxonomy of machine learning algorithms
  • Linear regression, logistic regression and related methods
  • Decision trees
  • Support Vector Machines
  • Bias & Variance, curse of dimensionality
  • Representation learning
  • Neural networks and deep learning: MLPs, transformers, CNNs
  • Applications to RNAseq and imaging data

 

Institutions

images/04_Institute/InterACt_19_Logo_rgb.jpg#joomlaImage://local-images/04_Institute/InterACt_19_Logo_rgb.jpg?width=653&height=653

Leibniz ScienceCampus "Integrative Analysis of pathogen-induced Compartments", InterACt

Interdisciplinary infection research network linking existing research groups in the fields of infection research and structural biology in the Hamburg Metropolitan region even more closely.

Universität Hamburg
Adeline Scharfenberg
Diese E-Mail-Adresse ist vor Spambots geschützt! Zur Anzeige muss JavaScript eingeschaltet sein. 

Universität Hamburg
Adeline Scharfenberg
Diese E-Mail-Adresse ist vor Spambots geschützt! Zur Anzeige muss JavaScript eingeschaltet sein. 

Universität Hamburg
Adeline Scharfenberg
Diese E-Mail-Adresse ist vor Spambots geschützt! Zur Anzeige muss JavaScript eingeschaltet sein.