data-based modelling

Events

images/02_events/Thoughts%20on%20Machine%20Learning.jpg#joomlaImage://local-images/02_events/Thoughts on Machine Learning.jpg?width=800&height=300
Wednesday, November 06th, 2024 | 15:15 p.m.

TRR 181 Seminar Series: November 6, Rupert Klein (FU Berlin): Thoughts on Machine Learning

UHH, Bundestr. 53, Hamburg, room 22/23.

Techniques of machine learning (ML) find a rapidly increasing range of applications touching upon social, economic, and technological aspects of everyday life. They are also being used with great enthusiasm to fill in gaps in our scientific knowledge by data-based modelling approaches. I have followed these developments for a while with interest, concern, and mounting disappointment. When these technologies are employed to take over decisive functionality in safety-critical applications, we would like to exactly know how to guarantee their compliance with pre-defined guardrails and limitations. Moreover, when they are utilized as building blocks in scientific research, it would violate scientific standards -in my opinion- if these building blocks were used without a throrough understanding of their functionality, including inaccuracies, uncertainties, and other pitfalls. In this context, I will juxtapose (a subset of) deep neural network methods with the family of entropy-optimal Sparse Probabilistic Approximation (sSPA) techniques developed recently by Illia Horenko (RPTU Kaiserslautern-Landau) and colleagues.

Institution

  • Center for Earth System Research and Sustainability (CEN) 

Universität Hamburg
Adeline Scharfenberg
Diese E-Mail-Adresse ist vor Spambots geschützt! Zur Anzeige muss JavaScript eingeschaltet sein. 

Universität Hamburg
Adeline Scharfenberg
Diese E-Mail-Adresse ist vor Spambots geschützt! Zur Anzeige muss JavaScript eingeschaltet sein. 

Universität Hamburg
Adeline Scharfenberg
Diese E-Mail-Adresse ist vor Spambots geschützt! Zur Anzeige muss JavaScript eingeschaltet sein.